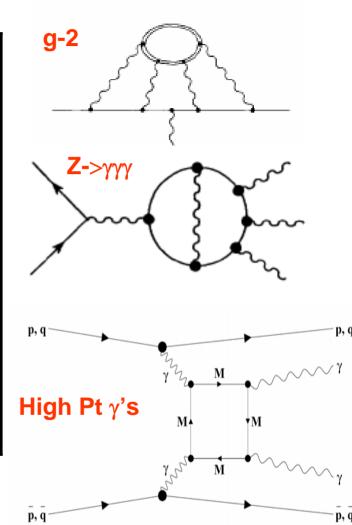
Search for Magnetic Monopoles at the RHIC

Vasily Dzhordzhadze for the Monopole Group CAD Meeting BNL, March 27, 2007

Motivation

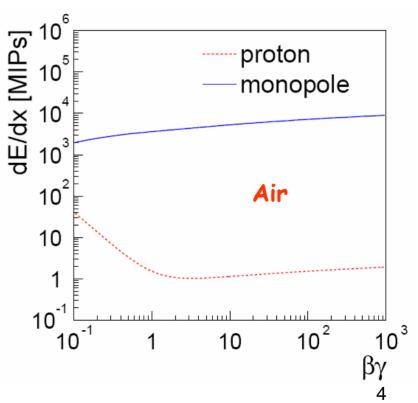
- 1269: French military engineer Pierre de Maricourt studied magnets
- · 1873: Maxwell equations; It can be symmetrized


$$\nabla \bullet \vec{E} = 4\pi\rho \qquad \nabla \times \vec{B} = \frac{1}{c} \frac{\partial \vec{E}}{\partial t} + \frac{4\pi}{c} j$$

$$\nabla \bullet \vec{B} = 0 + 4\pi\rho_{m} \qquad \nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \qquad -\frac{4\pi}{c} j_{m}$$

```
1931: Dirac - Quantization of electric charge: eg = nħc/2 n=1,2,3,... g_D=ħc/2e=e 137/2; g = ng_D; r_e=e²/m_ec²=r_M=g^2/m_Mc²; m_M=2.4 GeV 1974: t'Hooft and Polyakov - GUT of Strong and Electroweak interactions: (SU(5)->U(1)) MM mass ~ GUT scale = 10^{16} - 10^{17} GeV 1980-1990: Colored monopoles; Intermediate Mass MMs; Extra Dimensions, Superstring, Proton decay
```

Magnetic Monopole mass predictions


Electron radius	= 2.4 GeV
GUT	~ 10 ¹⁶ - 10 ¹⁷ GeV
Electroweak	~ 50 GeV - 10 ⁴ GeV
Super String	~ 10 ³ - 10 ⁵ GeV
g-2 of muons	> 240 GeV
Z-> γγγ	> 400 GeV
High P_{t} $\gamma's$	> 610 GeV s=0
High $P_t \gamma's$	> 870 GeV s=1/2
High P _t γ's	> 1570 GeV s=1

Magnetic Monopole Properties

- Coupling constant $\alpha_{MM}=g^2/\hbar c = e^2/\hbar c [g/e]^2=34.25>>1$
- Coupling constant $\alpha_{em} = e^2/\hbar c = 1/137 << 1$
- · Trajectory in Manetic field: hyperbola in r-z plane
- Energy gained in a B field : W = ngBl, few GeV/kGm
- Ionization a la Bethe-Bloch (Ze)²->(g β)² for β = 1,

 $(dE/dx)_{MM} = 4700 (dE/dx)_{min}$

Search for Magnetic Monopoles

- Direct experiments: A large variety of devices to detect the signature of MM passage
- · Search MMs in Cosmic Rays
- Search MMs stopped in mater (lunar rocks, earth ore)
- Search MMs at the accelerators
- Indirect experiments: Measurements of multi-photon production at the accelerators

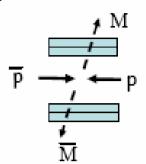
Searches at accelerators:

Cross section upper limits vs MM mass

Searches in Cosmic Rays:

Flux upper limits vs MM velocity

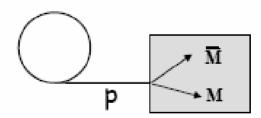
Searches for classical MMs at accelerators


$$e^+e^- \rightarrow M M$$
, $\overline{p}p \rightarrow M \overline{M}$, $pp \rightarrow pp M \overline{M}$

*Direct experiments

poles produced - detected immediately (large dE/dx)

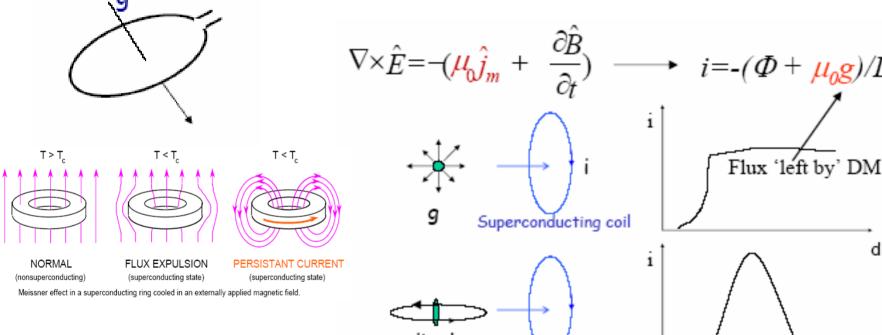
Searches with

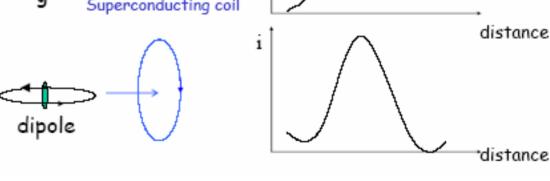

scintillation counters nuclear track detectors

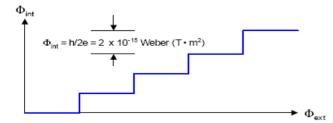
Limits (95 % CL)
$$\sigma(e^+e^-) < ^10^{-37} \text{ cm}^2 \quad m_M < 104 \text{ GeV}$$
 $\sigma(\overline{p}p) < 2 \times 10^{-34} \text{ cm}^2 \quad m_M < 850 \text{ GeV}$

*Indirect expts

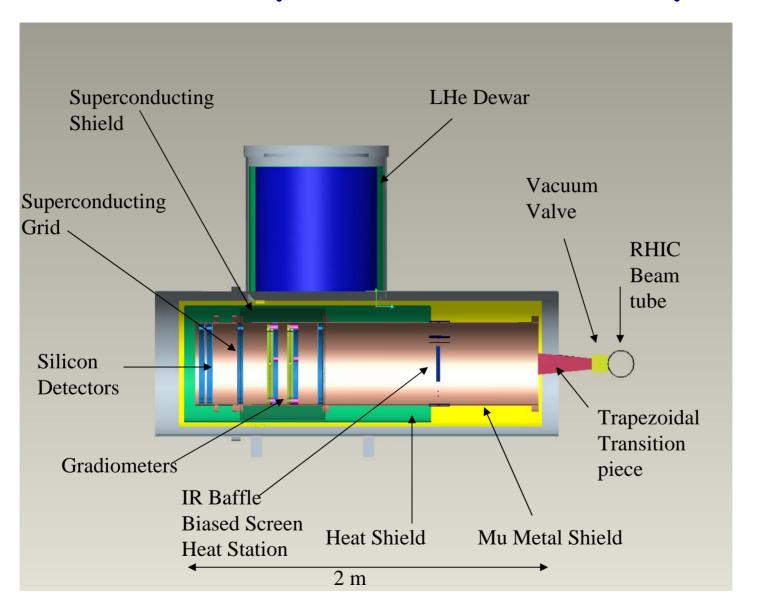
MMs { Produced Stopped Trapped

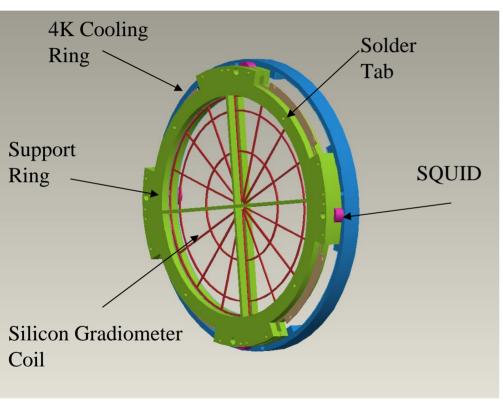


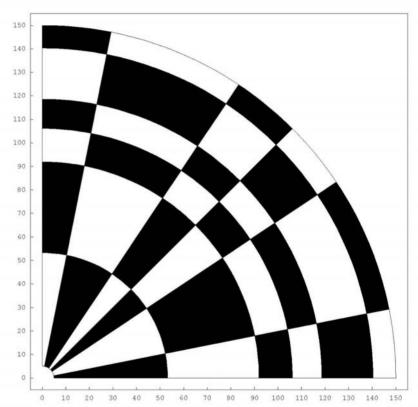

Others


Induction Devices

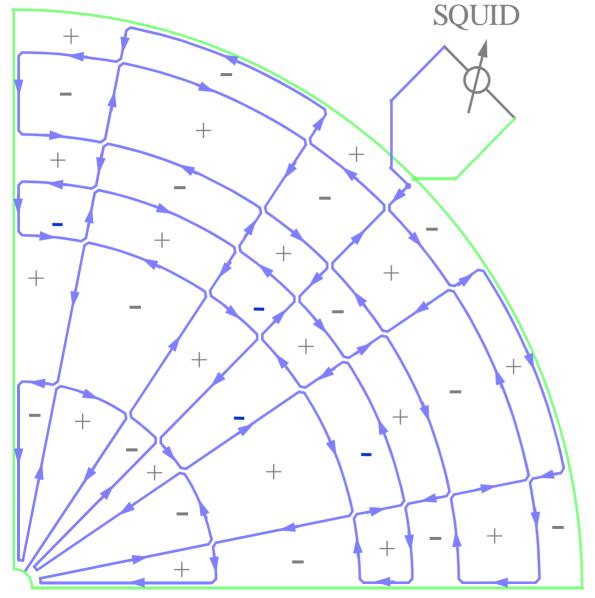
Method depends only on long range electromagnetic interaction.


Superconducting solenoid: $\Delta_i = 4\pi Ng_D/L = \Delta\Phi/L$; The change in flux induced by a monopole is $2\Phi_0$, where $\Phi_0=2.07\times10^{-15}$ Wb is flux quantum.

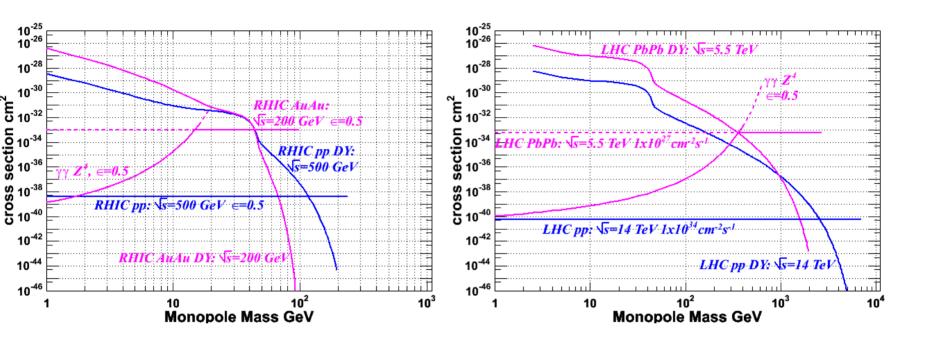




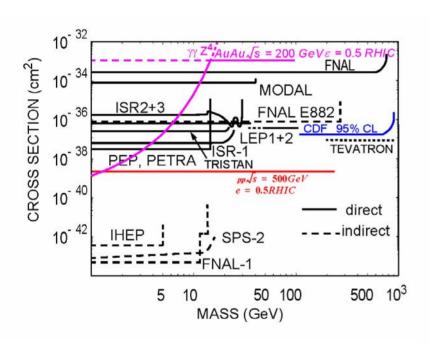
BNL Monopole Detector Setup

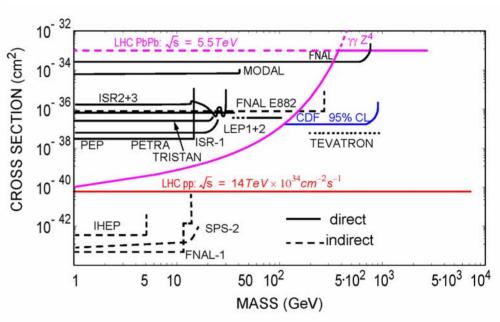


Gradiometer Assembly and Silicon Detector



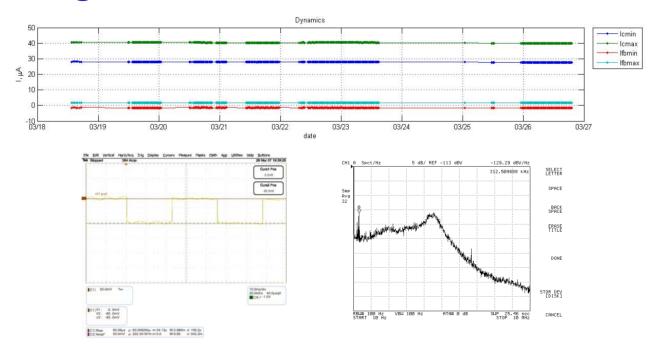
Third Order Gradiometer




- 3rd or 4th order gradiometer coils are being investigated
- •L_{3rd}~2µH
- •L_{4th}~3µH
- •3rd order gradiometer cancels polynomial terms up to 25th degree to better than 1%
- •4th order gradiometer cancels polynomial terms up to 75th degree to better than 1%

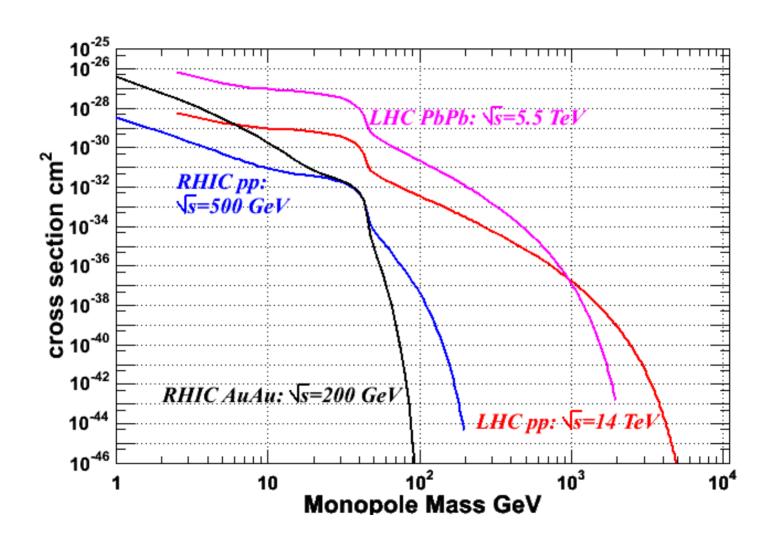
Expected Cross sections at RHIC and LHC

Published MM Experimental data


SBU Dewar installation at IR2

Experimental situation

- · Two Dewars: SBU and BNL
- SBU: Storage Dewar with superconducting magnetometer and SQUID
- BNL: Dewar with two 3rd order gradiometers, two magnetometers and 4 SQUIDs



Summary

- The counterpart to the quantized elementary charge is the magnetic monopole. No monopole has been detected so far
- Our proposed search is to detect a monopole by means of its magnetic charge
- The detector can be used in future higher energy accelerators: LHC and/or ILC

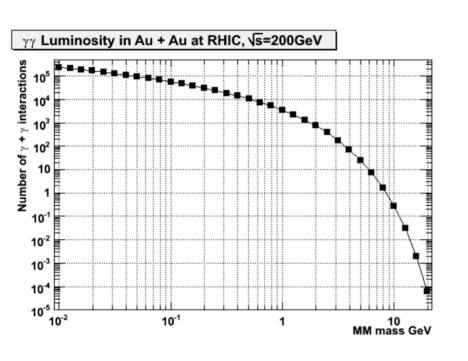
Backup Slides

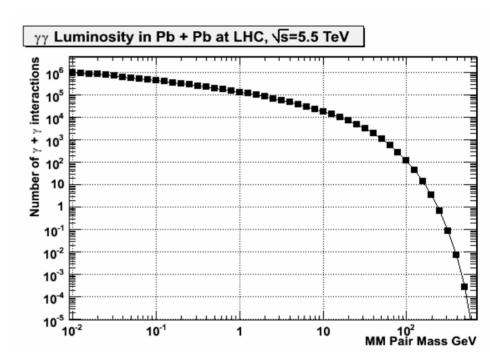
Drell-Yan Predictions at RHIC and LHC Energies

MMs cross section in pp interactions at RHIC and LHC

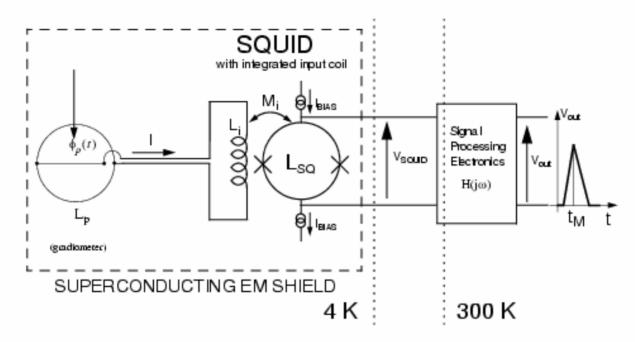
 σ < 3.0/(ε Ldt) one year (10⁷ s) **Lstore aug = 6×10³¹ cm⁻²s⁻¹ pp 100 GeV; 1.5x10³² cm⁻² s⁻¹ pp 250 GeV RHIC Lstore avg = 5×10³² cm⁻²s⁻¹ for p-p at 14 TeV LHC; x20 x200**

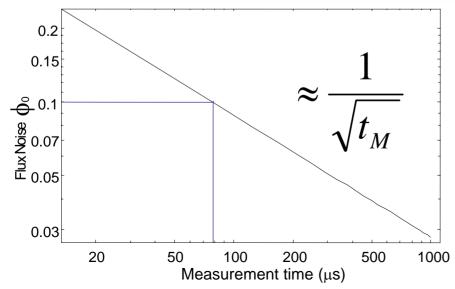
Energy	Ldt (pb ⁻¹)	3	σ(pb) limit	σ(cm²) limit
100	280	0.005	2.1	2.1x10 ⁻³⁶
100	280	0.5	0.021	2.1x10 ⁻³⁸
250	1500	0.005	0.4	4.0x10 ⁻³⁷
250	1500	0.5	0.004	4.0x10 ⁻³⁹
14000	5000	0.5	0.0012	1.2x10 ⁻³⁹
14000	100000	0.5	0.00006	6.0x10 ⁻⁴¹
14000	1000000	0.5	0.000006	6.0x10 ⁻⁴²

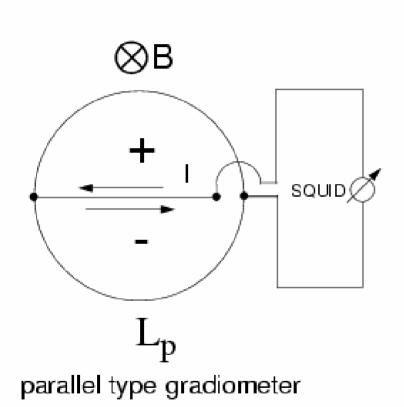

MMs cross section in AuAu ($\gamma\gamma$) RHIC and PbPb ($\gamma\gamma$) at LHC


 σ < 3.0/(ϵ Ldt) one year (10⁷ s)

Lstore avg = 8×10^{26} cm⁻²s⁻¹ for Au-Au at 100 GeV/n RHIC Lstore avg = 1×10^{27} cm⁻²s⁻¹ for PbPb at 5500 GeV/n LHC


Energy	Ldt (pb ⁻¹)	3	σ(pb) limit	σ (cm²) limit
100	0.006	0.005	100000	1.0×10 ⁻³¹
100	0.006	0.5	1000	1.0×10 ⁻³³
100	0.006	0.005	0.0026	2.6×10 ⁻³⁹
100	0.006	0.5	0.000026	2.6×10 ⁻⁴¹
5500	0.01	0.5	600	6.0×10 ⁻³⁴
5500	0.01	0.5	0.000012	1.2×10 ⁻⁴¹


Luminosity Functions AuAu (yy), RHIC and PbPb, LHC


SQUID Noise

- Time resolution ~1 μs
- $^{\star} \sim \! 100 \mu s$ measurement time needed to achieve $0.1 \varphi_0$ sensitivity

Gradiometer

- Rejects "stray" B fields but has full sensitivity to monopole signal
- Built with superconductor on Si substrate (for cooling)
- Built in quadrants to reduce inductance and fit into 30cm diameter commercial Si wafers